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Szpiro’s Conjecture

Conjecture

For each ε > 0 there exists a constant Cε such that if E is an
elliptic curve over Q with minimal discriminant ∆ and conductor
N, then

|∆| ≤ CεN
6+ε .
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Szpiro’s Conjecture

Definition

The Szpiro ratio is

σ = σE :=
log |∆|
log(N)

.

I Szpiro’s conjecture implies that σ is bounded.

I Szpiro’s conjecture is equivalent to the statement:
for all M > 6 there are only finitely many isomorphism classes
of elliptic curves over Q such that σ ≥ M.
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Importance of Szpiro’s Conjecture

Szpiro’s conjecture is equivalent to the weak ABC -conjecture.

Conjecture

Let A,B,C be nonzero pairwise coprime integers with
A + B + C = 0. For each ε > 0, there exists a constant κ(ε) > 0
such that

|ABC |1/3 < κ(ε)N1+ε

where N =
∏

p|ABC p.
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Importance of Szpiro’s Conjecture

Szpiro’s conjecture implies Lang’s conjecture on canonical heights.

Conjecture

Let K be a number field. There is a constant c(K ) > 0 such that
for all elliptic curves E/K and all non-torsion points P ∈ E (K ),

ĥE (P) ≥ c(K ) log(NK/Q(∆))

where ĥE is the canonical height on E .
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Results In The Literature

I L’ensemble exceptionnel dans la conjecture de Szpiro,
E. Fouvry, M. Nair, G. Tenenbaum

I Détermination de courbes elliptiques pour la conjecture de
Szpiro, A. Nitaj
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Results of Fouvry, et al.

I Show that Szpiro’s conjecture holds for “almost all” elliptic
curves.

I Measure the density of the set of exceptions.
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Results of Fouvry, et al.

For a, b ∈ Z, let E (a, b) be the elliptic curve given by
y2 = x3 + ax + b.

Let S0(A,B;M) be the number of pairs (a, b) such that

|a| ≤ A, |b| ≤ B, and σE(a,b) ≥ M ,

and such that @p prime with p4 | a and p6 | b.

Theorem

For any M > 1,

lim
A,B→∞

1

AB
S0(A,B;M) = 0 .
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Results of Nitaj

I Find elliptic curves with large Szpiro ratio.

I Found the curve

E : y2 + xy = x3 + x2 + 349410011109107572x

− 775428774618307505842556592

with

σE =
log(226 · 352 · 5 · 118 · 13 · 196 · 314)

log(2 · 3 · 5 · 11 · 13 · 19 · 31)
≈ 8.811944 .
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Results of Nitaj

Summary of strategy:

1. Find a family of elliptic curves depending on parameters s, t
with a torsion point of order m ∈ {2, 3, . . . , 8}.

2. Mod out the subgroup generated by one or more of these
torsion points in an attempt to introduce large powers in the
discriminant.

3. By solving certain Diophantine equations, determine specific
values of the parameters s, t that produce large Szpiro ratios.

4. Apply quadratic twists to try to further increase the Szpiro
ratio.
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Szpiro’s Conjecture for Abelian Varieties

Generalized Szpiro (Hindry)

For ε > 0, there is a constant cε such that Falting’s height and
conductor of any abelian variety A/Q of dimension g satisfy

hFalt(A) ≤
(g

2
+ ε
)
NA + cε.

Generalized Szpiro: Hyperelliptic Discriminant Version

There are constants c , κ such that if C/Q is a hyperelliptic curve
of genus g , with Jacobian J, then ∆min

C ≤ cεN
κ+ε
J .

Based on analogy with elliptic curves, and a “tentative suggestion”
of Lockhart for a related conjecture, we tentatively suggest that
κ = 10 = 4g + 2 might be the right value for genus 2.
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Szpiro Ratio for Hyperelliptic Curves

Following Nitaj, we look for curves which force the constants in
generalized Szpiro to be large.

Definition: Szpiro Ratio.

For C/Q a hyperelliptic curve with Jacobian J call

σ = σC =
log |∆min

C |
logNJ

the Szpiro ratio of C .

The hyperelliptic discriminant version of generalized Szipiro would
imply that for any fixed genus, σ is bounded.
For many ‘random’ curves we tried, σ is between 1 and 3.
To ‘test’ the conjectures, let’s look for big σ.
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Looking for Large Szpiro Ratios

For elliptic curves, wanted large isogeny classes
⇒ started with curves with large torsion.

For hyperelliptic curves, rationale for large torsion is a priori less
clear:

1. Even if J ∼ A, A need not be the Jacobian of a genus 2 curve.

I A not principally polarized.
I A ∼= E1 × E2 (with product polarization) as p.p.a.v.

2. Even if J(C1) ∼ J(C2), different primes may divide ∆min
C1

and

∆min
C2
.

I C1 has bad reduction at p but J(C1) , C2, and J(C2)) have
good reduction, and vice versa.

But we want to experiment, and C with #J(C )(Q)tors. large are
interesting, so forge ahead.
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First Experiments

We looked at several families of curves Ct with #J(Ct)(Q) large
generically on the family and several sporadic examples.

I 13-torsion family (Flynn):

y2 + (2tx − t)y = −t2x2(x − 1)3

I 15-torsion family (Leprevost):

y2 = ((t + 3)x2 − (2t + 3)x + t + 1)2 − 4tx3(x − 1)2

I 24-torsion family (Howe): See later slide

I Several others.

Howe 24-torsion family had much larger Szpiro ratios than the
others.
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Howe 24-Torsion Family

Constructed by “gluing elliptic curves along 2-torsion”:

F : y2 = g(x) = x3 − 31x2 + 256x

Es : y2 = f (x) = x3 +
−8(s4 + 42s2 − 147)

(s2 + 63)2
x2 +

16(s2 + 7)3

(s2 + 63)3
x

J(Cs) is the image of F ×Es under a (2, 2)-isogeny φ, where ker(φ)
is the graph of an isomorphism of F [2] ∼= Es [2] as Galois modules.

Equations for Cs can be given explicitly (and Howe does).
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Howe 24-Torsion Family

For s ∈ Q, define

c4 = −31(s4 + 42s2 − (32200/93)s − 147)

c2 = 28(s8 + 84s6 − (3472/3)s5 + 1470s4 − 48608s3 + 53508s2

+ 170128s + 21609)

c0 = 220(7/3)s(s2 + 7)3(s2 + 63)

d = s4 + 42s2 + (1736/3)s − 147

Then let C : y2 = (1/d)(x6 + c4x
4 + c2x

2 + c0).
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Heuristic Explanation of Large Szpiro Ratios

1. Conductor (of the Jacobian) is nailed down. J(Cs) ∼ F × Es ,
so NJ(Cs) = NF · NEs

I Analogy to searching in isogeny families.
I Conductor computation is provably correct and much easier.

2. Large ‘extra’ prime factors often appear to high powers
(≈ 20) in ∆(Cs).

I J non-simple rules out an obstruction to such primes.
I If J has good reduction at p and Jp is absolutely simple, then

C has good reduction at p.
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s = 1/12i , i = 1, . . . , 8

log |∆|/ log(N) ≈
log 2223673431211110093204220722

log 223272431211110091
16.05

log 2283973233281146491631136147854899122

log 22327223128114649163111
18.88

log 2343127331715934291209018893130768084758527922

log 22327231715934291209018891
20.24

log 2403157319126715179735810934043111471143014876786237181322

log 2232726715179715810914043111471
20.53

log 2463187333613611312156491128956129324926793719218940018932774191922

log 2232723361115649112895612912492679371
20.28

log 2523217362412703137793356171432824012911168602113286255440580260659122

log 2232726241270313779315617143282401291
22.08

log 258324734122193129322256744711632372231898742925184204932017161633638299363031388188322

log 223272193125674471163237223189874292518420491
22.40

log 26432773891217912211138916532214053312141908506565471112941898122652549133343702481744202777962953312

log 22327221113891141908506565471112941898122652549131
14.26
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s = 1/15i , i = 1, . . . , 8

log |∆|/ log(N) ≈
log 21036537319734431535122

log 2232517219714431
11.49

log 220395673113402732491712313446378912

log 2232517211140271249171
12.30

log 2103125973112233371317313673500911076092217288488912

log 2232517211123137131711367150091
14.81

log 2193155127323129112732272214933118273392543123782377167719014804922

log 2232517223129112711493111827137823771
19.41

log 210318515733734712901331704731151303736659591115927025913226376872934112

log 223251723719013117047311513037166595911
16.10

log 2213215187315122664134192214074207931210957984217123192976284027111135280456542973

log 223251723192976284027111135280456542971
17.06

log 2103245217311343353367405919005513113146338526489982712522629007334179124849748711758651922

log 223251721114315316740591900551111314631852648998271
17.50

log 219327524731111931241177225411291288483511645372233344198033134035208431289054921239389238554905446903122

log 223251721111931884835116453722313441980331890549212391
19.50
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Next Steps

1. Analyze the effect of taking quadratic twists/experiment with
quadratic twists.

I If J is semisimple, quadratic twisting shouldn’t make Szpiro
ratios above 5 larger (up to some possible funny business at 2.)

I Quadratic twists by primes of good reduction move Szpiro
ratio towards 2.5.

I May be able to analyze additive or mixed reduction in
particular families.

2. Consider more families from ‘gluing along torsion.’

3. Better understand when C has bad reduction but J has good
reduction and construct large Szpiro examples.

4. Analytic argument à la Fouvry, Nair, Tenenbaum that almost
all hyperelliptic curves (ordered by discriminant or
coefficients) have Szpiro ratio close to one.
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Thank you!
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